
Version Control for Computational Economists:
An Introduction

Jake C. Torcasso

April 3, 2014

Starting Point

I A collection of files on your computer
I Changes to files and new files over time
I Interested in preserving the history of these changes

In one sentence...

“Version Control is a system that records changes to a file or set of
files over time so that you can recall specific versions later”
(Chacon and Hamano, 2009).

Version Control Evolving

I Middle Ages - Copying the Bible
I Each version was handwritten
I Used margins for corrections
I Induced regional heterogeneity

I The modern Bible scribe
I Copy/paste versions to an archive
I Include a readme

I Post-modern methods of Version Control
I Version Control Systems

I Localized (rcs)
I Centralized (CVS, Subversion, Perforce)
I Distributional (Git, Mercurial, Bazaar, Darcs)

http://en.wikipedia.org/wiki/Bible_translations
http://en.wikipedia.org/wiki/Revision_Control_System
http://en.wikipedia.org/wiki/Apache_Subversion

Concepts of Version Control Systems

Remote
file system

Local file
system

Github Server

Pam’s Computer

File A

File B

Distributional Version Control Systems

I Network of repository copies (mirrors)
I Identical, full copies of the data

DVCS Structure

Version Control in Economic Research

Dissemenation Colla
bora

tio
n

Organization

Version
Control

I Dissemenation
I Availability
I Reproducibility
I Transparency
I Extendability

I Organization
I Contemporaneity
I Workflow
I Project Management
I Progress tracking
I Security

I Collaboration
I Visibility
I Communication
I Coordination

Dissemenation

I Self-contained source code
I Online visualization and availability
I Seamless integration with existing knowledge...

I Reduces burden to reproduce work
I Provides immediate stepping stone for future work
I Meaning more scientific progress!

I Facilitates review of scientific work
I Too often overlooked and under-emphasized

You’ll believe me if you go on Github.com.

https://github.com/

Organization

I Always stay up-to-date
I Explore alternative workflows–diverge and converge
I Chill pill–at ease with experimentation
I Retain an (annotated) historical record of your work
I Manage access rights

http://git-scm.com/book/en/Git-Branching
http://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/Git-Internals-Transfer-Protocols

Collaboration

I Increase oversight over project contributors
I Check logs for progress updates
I Set milestones and tag important project states

I Quickly point-out issues (bugs)
I Resolve file conflicts
I Increase foresight
I At-ease with the newbies

I Erase mistakes
I Non-linear project workflows
I Easily merge work from others

Git

Introducing Git

Git is a distributional version control system most notably used by
Github, the web-based hosting service for software development
projects. Checkout a good Git book here.

http://git-scm.com/book

Introducing Git
First consider a git server, which is nothing but a computer with
the following file structure.

Central Server

MyProject/

File a

File b

File c

.git/

...

24b9da655

Git Storage

Commit Hash (version #)

Introducing Git
When Pam clones this repository to her computer, she sees:

Pam’s Computer

MyProject/

File a

File b

File c

.git/

...

Introducing Git
When Pam changes “File b”, she merely changes her “working
directory”. Git will recognize the change, but won’t record it.

Pam’s Computer

MyProject/

File a

File b

File c

.git/

...

Introducing Git

To record the change she performs two commands:
1. $ git add ‘‘File a’’

2. $ git commit -m ‘‘I have changed File a.’’

The second command generates a commit and a corresponding
commit message. A commit is like a “snapshot”; it records the
current state of your files. Read more on commits here.

http://git-scm.com/book/en/Getting-Started-Git-Basics

Introducing Git
Now Pam’s local repository is at a future state, recorded as a new
commit hash. The commit information is stored in the git directory.

Pam’s Computer

MyProject/

File a

File b

File c

.git/

...

75b10da55

Git Storage

New Commit Hash

Introducing Git

Using $ git status , we get the following output:

$ git status
on branch master
Your branch is ahead of ’origin /master ’ by 1 commit .
#
nothing to commit (working directory clean)

The git directory stores the commit history:

... → 24b9da655 → 75b10da55

Using $ git status told Git to compare the current state with
the last known state directly from ‘origin/master’.

Introducing Git
To see the last 2 commits we may do the following:

$ git log -2
commit 75 b10da55
Author : Pam <pam@usa .com >
Date: Mon Mar 24 17:28:17 2014 -0500

I have changed File a

commit 24 b9da655
Author : David <david@milkandcheese .com >
Date: Tue Mar 13 12:33:16 2014 -0500

Included this month ’s cow deaths in File c

Introducing Git
To introduce her changes to the Central Server, Pam has to push
her changes.

$ git push origin master

The Central Server has been updated with Pam’s changes.

Git Concepts
Now that you have been introduced to Git, let’s clarify some of the
concepts you have encountered.

Git Concepts
We have also seen the various ways Git recognizes and records
information about files.

Git Concepts
Tracking:

I Git will only track files you tell it to track
I Only tracked files have a commit history, enabling:

I updates to remote repositories
I reverting changes

Git Concepts
Let’s see how Pam begins tracking “File d”, which she just created
and added to her project. Her working directory looks like this:

Pam’s Computer

MyProject/

File a

File b

File c

File d

.git/

...

Untracked File

Git Concepts
Pam opens terminal and issues the following command:

$ git add ‘‘File d’’

Pam’s Computer

MyProject/

File a

File b

File c

File d

.git/

...

Newly Tracked,
Not Committed

Git Concepts

Pam pushes her changes to the remote Central Server.

$ git commit -m "Added File d, contains info on fat %."
$ git push origin master

Collaboration with Git

Git Concepts
David wishes to update his local files with the most recent version
from the Central Server (i.e. fast-forwarding to Pam’s commit.)

Central Server

MyProject/

File a

File b

File c

File d

.git/

...

17a10ca55

David’s Computer

MyProject/

File a

File b

File c

.git/

...

24b9da655

Commit History:
... → 24b9da655 → 75b10da55 → 17a10ca55

Git Concepts

When David issues the command

$ git pull origin

the changes upstream are fetched from the Central Server and
merged with the files in his working directory.

http://git-scm.com/book/en/Git-Basics-Working-with-Remotes

Branching

Git Concepts

Up until now, we have glossed over one very important feature of
Git: branching .

But we have learned two concepts: the commit and
git repository .

Git Concepts

A Git branch is just a pointer to a specific commit.
I allows for non-linear workflows and simultaneous channels of

development.
I aids the implemention new features.

Git Concepts

An economist might use branching to:
I Attempt a new identification strategy
I Quickly revert to a previous set of results
I Experiment with new numerical software

Git Concepts
Git repositories, commits and branches all describe a location in
Gitland.

Pam’s Repository

C1

C2

C3

C6

C4

C5master dev

HEAD

Pam’s HEAD Pointer

MyProject/

File a

File b

File c

.git/

...

24b9da655

Git Concepts

HEAD is a special pointer which always points to the current
focal branch. master and dev are branches, which merely point
to a particular commit . Each commit is a saved state, or
snapshot of your project as a whole.

Git Concepts
Navigate Gitland by changing the location of the HEAD pointer.
You can checkout a branch:

$ git checkout master

Pam’s Repository

C1

C2

C3

C6

C4

C5master dev

HEAD

Merging

Git Concepts

We will not get into the details of merging, but we can explore one
example. Let’s have Pam merge the dev branch into master .

$ git merge dev

Git Concepts

If the master and dev branches did not modify the same file, the
merge should go smoothly, producing an automatic merge commit.
Otherwise, Pam has to modify the conflicted file(s) and then
manually commit.

Git Concepts
Let’s say Pam has a merge conflict. The conflicted file looks like
this in the two different branches.

I dev

places = {’Mexico ’:’ Spanish ’, ’United States ’:’ English ’,
’Brazil ’:’ Portuguese ’}

for key in places :
print key , places [key]

for i in [1 ,2 ,3]:
print i

I master

places = {’Mexico ’:’ Spanish ’, ’United States ’:’ English ’,
’Brazil ’:’ Portuguese ’}

for key in places :
print key , places [key]

for i in [4 ,5 ,6]:
print i

Git Concepts
After attempting the merge, Git forces Pam to resolve all merge
conflicts. Git modifies the file in her working directory to highlight
the conflicting portions of the file.

places = {’Mexico ’:’ Spanish ’, ’United States ’:’ English ’,
’Brazil ’:’ Portuguese ’}

for key in places :
print key , places [key]

<<<<<<< HEAD
for i in [4 ,5 ,6]:
=======
for i in [1 ,2 ,3]:
>>>>>>> new

print i

<<<<<<<< HEAD signals the version of your current branch and
>>>>>>>> new that of the branch you attempting to merge into

your current branch.

Git Concepts

Pam resolves the conflict by editing the file.

places = {’Mexico ’:’ Spanish ’, ’United States ’:’ English ’,
’Brazil ’:’ Portuguese ’}

for key in places :
print key , places [key]

for i in [1 ,2 ,3 ,4 ,5 ,6]:
print i

Then she commits again.

$ git add filea
$ git commit -m " Resolved conflict , iterating through long list"

Git Concepts
After the merge is complete, Pam’s commit history in her local
repository looks like:

Pam’s Repository

C1

C2

C3

C6

C4

C5

C7master

devHEAD

Git Concepts

To view the difference between this and the last commit, Pam uses
the command $ git diff HEADˆ -- filea

Git Concepts

Because she has configured Git to use a difftool, she also uses
vimdiff with the command $ git difftool HEADˆ -- filea
for a side-by-side comparison.

http://stackoverflow.com/questions/3713765/viewing-all-git-diffs-with-vimdiff

Framework For Understanding Git

Understanding Scope

I Know the difference between
I git directory (i.e. Gitland)
I working directory (current, local state of files)
I The location of HEAD in your git directory and any local file

modifications determine the state of your working directory

Understanding the Commands
Commands fall under four categories:

1. Update your working directory to reflect a git directory

$ git checkout master

2. Update a git directory with another git directory

$ git push origin master

3. Update a git directory with your current working directory

$ git commit

4. Update within a git directory

$ git merge dev

Next Steps
We could not cover everything, here’s how to proceed:

I Understanding how Git records file states or snapshots
I Creating and using git branches
I Customizing git
I Viewing differences across file versions (i.e. diffing)
I Reverting changes

http://git-scm.com/book/en/Getting-Started-Git-Basics
http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is
http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup
http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository
http://git-scm.com/book/en/Git-Basics-Undoing-Things

Comprehensive Resources

Many resources are available for git. Stackoverflow will answer
most questions. This post is a great resource for beginners and
advanced users alike.

http://stackoverflow.com/questions/tagged/git
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide

Now learn Git so you can forget about versioning and move-on
with research!

Chacon, S. and J. C. Hamano (2009). Pro Git, Volume 288.
Springer.

